Homework 4 MTH 869 Algebraic Topology

Joshua Ruiter

February 12, 2018

Proposition 0.1 (Exercise 1.2.6). Let S be a closed, discrete subset of \mathbb{R}^n with $n \geq 3$. Then $\mathbb{R}^n \setminus S$ is simply connected.

Proof. Let $S = \{s_i\}_{i \in I}$ where I is some arbitrary indexing set. Since S is discrete, for each i there exists $\epsilon_i > 0$ so that $B(s_i, 2\epsilon_i) \cap S = \{s_i\}$. For each i, choose x_i to be a point of distance ϵ_i from s_i . We define a zero skeleton $X^0 = \{x_i\}_{i \in I}$.

To each x_i , attach an (n-1) cell via a constant map, so that the resulting copy of S^{n-1} is $\partial B(s_i, \epsilon_i)$. That is, the copy of S^{n-1} encloses s_i . This forms an (n-1) skeleton. Now attach a single *n*-cell to fill up the rest of the ambient \mathbb{R}^n , attaching pieces to each S^{n-1} as necessary. The resulting *n*-dimensional CW complex X is $\mathbb{R}^n \setminus \bigcup_i B(s_i, \epsilon_i)$. Then we see that X is a deformation retract of $\mathbb{R}^n \setminus S$, since we can linearly retract each $B(s_i, \epsilon_i) \setminus \{s_i\}$ to its boundary.

Since $n \geq 3$, we have $n-1 \geq 2$, so $\pi_1(S^{n-1}) = 0$, and since X^{n-1} is a disjoint union of n-1 spheres, thus $\pi_1(X^{n-1}, x_0) = 0$. Now by Proposition 1.26(b), since X is obtained from X^{n-1} by attaching *n*-cells, $\pi_1(X) \cong \pi_1(X^{n-1}) = 0$. Thus X is simply connected, so $\mathbb{R}^n \setminus S$, which is homotopy equivalent to X, is also simply connected. \Box

Proposition 0.2 (Exercise 1.2.7). Let X be the quotient space of S^2 formed by identifying the north and south poles. Then X is a CW complex and has fundamental group $\pi_1(X) \cong \mathbb{Z}$.

Proof. We take the zero-skeleton X^0 to be a single point x_0 , and form the one-skeleton X^1 by attaching a single interval and identifying both endpoints with x_0 . Thus, X^1 is homeomorphic to S^1 . Then we define an attaching map $\phi : S^1 \to X^1 \cong S^1$ as follows. We view S^1 as a square, labelling the sides a, b, c, d in clockwise order. We send a to wrap once around X^1 clockwise. We send b and d both to the basepoint x_0 . We send c to wrap once around X^1 counterclockwise. Thus we attach a 2-cell to S^1 . The resulting space is X.

Now we can compute $\pi_1(X)$. By proposition 1.26(a), the inclusion $X^1 \hookrightarrow X$ induces a surjection $\iota_* : \pi(X^1, x_0) \to \pi_1(X, x_0)$, where the kernel is generated by conjugations of ϕ by change of basepoint paths. Since ϕ has the right basepoint, the kernel is generated by $[\phi]$. But $[\phi] = 0$ in $\pi_1(X^1, x_0)$. Thus $\pi_1(X, x_0) \cong \pi_1(X^1, x_0) \cong \mathbb{Z}$. **Lemma 0.3** (for Exercise 1.2.9). Let M_g be the closed orientable surface of genus g, and let M'_g be the closed surface obtained by removing an open disc from M_g . Then $M'_g \simeq \bigvee_{i=1}^{2g} S^1$, so $\pi_1(M'_g)$ is the free group on 2g generators.

Proof. We can view M_g as a regular polygon with 4g sides with sides identified in a particular way. That is, going clockwise around we label the sides

$$a_1, b_1, a_1^{-1}, b_1^{-1}, a_2, b_2, a_2^{-1}, b_2^{-1}, \dots, a_{2g}, b_{2g}, a_{2g}^{-1}, b_{2g}^{-1}$$

and make the implied identifications. Then we view M'_g as this same space, with a small open disk removed from the center of the polygon. Thinking of our polygon as centered at the origin in the plane, and our removed open disk as centered at the origin, notice that each radial line connecting the central disk and the boundary the polygon is contractible. Thus, M'_g is homotopic to just the polygon with sides identified. This polygon is a wedge sum of 2g circles. Thus $M'_g \simeq \bigvee_{i=1}^{2g} S^1$. We already computed $\pi_1 (\bigvee_{i=1}^{2g} S^1)$ to be the free group on 2g generators, using Van Kampen's theorem. \Box

Lemma 0.4 (for Exercise 1.2.9). Abelianization of groups is a covariant functor.

Proof. We have a rule ab : Grp \rightarrow Ab that sends a group G to the abelian group $G^{ab} = G/[G,G]$. Given a group homomorphism $f: G \rightarrow H$, we define $f^{ab}: G^{ab} \rightarrow H^{ab}$ by $x[G,G] \rightarrow f(x)[H,H]$. First we check that f^{ab} is well defined. Suppose x[G,G] = y[G,G]. Note that $f([G,G]) \subset [H,H]$ since f maps commutators to commutators, as it is a homomorphism.

$$xy^{-1} \in [G,G] \implies f(xy^{-1}) \in [H,H] \implies f(x)f(y)^{-1} \in [H,H] \implies f(x)[H,H] = f(y)[H,H]$$

Thus f^{ab} is well defined. Now we show that it is a covariant functor. First, $\operatorname{Id}_{G}^{ab}: G^{ab} \to G^{ab}$ is the identity on G^{ab} , as can be seen from the definition of f^{ab} . Let $f: G \to H$ and $g: H \to K$ be group homomorphisms. Then $(g \circ f)^{ab}: G^{ab} \to K^{ab}$ acts on $x[G, G] \in G^{ab}$ by

$$(g \circ f)^{ab}(x[G,G]) = (g \circ f)(x)[K,K] = g(f(x))[K,k] = g^{ab}(f(x)[H,H]) = g^{ab} \circ f^{ab}(x[G,G])$$

Thus $(g \circ f)^{ab} = g^{ab} \circ f^{ab}$, so ab is a covariant functor.

Lemma 0.5 (for Exercise 1.2.9). Let $\phi : G \to H$ and $\psi : H \to G$ be group homomorphisms so that $\phi \circ \psi = \mathrm{Id}_H$. Then ψ^{ab} is injective.

Proof. By functoriality of ^{ab}, we have $(\phi \circ \psi)^{ab} = \phi^{ab} \circ \psi^{ab}$ and $(\mathrm{Id}_H)^{ab} = \mathrm{Id}_{H^{ab}}$. Thus

$$\phi \circ \psi = \mathrm{Id}_H \implies \phi^{\mathrm{ab}} \circ \psi^{\mathrm{ab}} = \mathrm{Id}_{H^{\mathrm{ab}}}$$

Thus ψ^{ab} has a left inverse, so it is injective.

Proposition 0.6 (Exercise 1.2.9, part one). Let M_g be the orientable surface of genus g, and let C be a circle that separates M_g into two compact subsurfaces M'_h and M'_k obtained from the closed surfaces M_h and M_k by deleting an open disk from each. Then M'_h does not retract onto its boundary circle C, and hence M_g does not retract onto C.

Proof. Suppose there is a retraction $r: M'_h \to C$. Then the inclusion $\iota: C \hookrightarrow M'_h$ induces an injective homomorphism $\iota_*: \pi_1(C) \to \pi_1(M'_h)$. Note that $\pi_1(C) \cong \mathbb{Z}$ and $\pi_1(M'_h)$ is free on 2h generators, which we denote by F_{2h} . Thinking of M'_h as a 4g-sided polygon with a central disk removed, we see that C, the boundary of the removed disk, is homotopic to the boundary edge word

$$[a_1, b_1] \dots [a_h, b_h] = a_1 b_1 a_1^{-1} b_1^{-1} \dots a_h b_h a_h^{-1} b_h^{-1}$$

Thus ι_* maps a generator of $\pi_1(C)$ to the above word. Then applying the ^{ab} functor, we get $\iota_*^{ab} : \pi_1(C)^{ab} \to \pi_1(M'_h)^{ab}$. Since $\pi_1(C)$ is abelian, we drop the ^{ab} and write $\iota_*^{ab} : \pi_1(C) \to \pi_1(M'_h)^{ab}$. Note that we have homomorphisms $r_* : \pi_1(M'_h) \to \pi_1(C)$ and $\iota_* : \pi_1(C) \to \pi_1(M'_h)$ so that $r_* \circ \iota_* = \mathrm{Id}_{\pi_1(C)}$. Then by our Lemma 0.5, ι_*^{ab} is injective. However, we also compute directly that

$$\ker \iota_*^{ab} = \{ x \in \pi_1(C) : \iota_*^{ab}(x) = 0 \}$$

= $\{ x \in \pi_1(C) : \iota_*(x)[F_{2h}, F_{2h}] = 0 \}$
= $\{ x \in \pi_1(C) : \iota_*(x) \in [F_{2h}, F_{2h}] \}$
= $\pi_1(C)$

since ι_* maps a generator for $\pi_1(C)$ to a product of commutators. This is a contradiction, since ι_* cannot be both injective and have nontrivial kernel. Hence no such retraction exists.

As a consequence of this, we show that M_g does not retract onto C. Suppose we have a retraction $r: M_g \to C$. Then $r|_{M'_h}: M'_h \to C$ is also a retraction, which we showed cannot exist. Thus M_g does not retract to C.

Proposition 0.7 (Exercise 1.2.9, part two). Let M_g be the orientable surface of genus g, and let C' be a "non-separating" circle (depicted on page 53 of Hatcher). Then M_g retracts to C'.

Proof. We think of M_g as a 4g-sided polygon with side identifications going around clockwise

$$a_1, b_1, a_1^{-1}, b_1^{-1}, a_2, b_2, a_2^{-1}, b_2^{-1}, \dots, a_{2g}, b_{2g}, a_{2g}^{-1}, b_{2g}^{-1}$$

where C' is the loop a_1 . Then we make the identification $a_i = a_1$ and $b_i = b_1$. The quotient map of this identification is then a retract $M_q \to M_1$, that is, a retract to the torus.

Now we claim that the torus can be retracted to S^1 . Viewing the torus as a square with edges $aba^{-1}b^{-1}$, we define a retraction $M_1 \to M_1$ by projecting every point straight up to the edge a_1 . Continuity is clear everywhere except near the bottom edge a_1^{-1} . But the map is continuous there as well, since this map is equivalent to projecting down to a_1^{-1} , and that map is clearly continuous everywhere except perhaps near the top edge a_1 . So this is a retract of M_1 to a_1 . Finally, we take the composition of these retractions to get a retraction M_g to $a_1 = C'$.

Proposition 0.8. The Borromean rings cannot be split apart.

Proof. Label the three rings A, B, C. If we regard C as lying in the complement of $A \cup B$, then the question of whether the three circles can be unlinked is equivalent to C being trivial in $\pi_1(\mathbb{R}^3 \setminus (A \cup B))$. As noted by Hatcher on page 46, the complement of $A \cup B$ deformation retracts to $S^1 \vee S^1 \vee S^2 \vee S^2$. Then we see that $\pi_1(\mathbb{R}^3 \setminus (A \cup B))$ is the free group generated by loops around the two copies of S^1 , which we can call a and b. As Hatcher depicts on page 23, the loop C is then $aba^{-1}b^{-1}$, which is not zero in the free group. Hence the rings cannot be split.