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Proposition 0.1 (Exercise 1.2.6). Let S be a closed, discrete subset of Rn with n ≥ 3. Then
Rn \ S is simply connected.

Proof. Let S = {si}i∈I where I is some arbitrary indexing set. Since S is discrete, for each
i there exists εi > 0 so that B(si, 2εi) ∩ S = {si}. For each i, choose xi to be a point of
distance εi from si. We define a zero skeleton X0 = {xi}i∈I .

To each xi, attach an (n− 1) cell via a constant map, so that the resulting copy of Sn−1

is ∂B(si, εi). That is, the copy of Sn−1 encloses si. This forms an (n − 1) skeleton. Now
attach a single n-cell to fill up the rest of the ambient Rn, attaching pieces to each Sn−1 as
necessary. The resulting n-dimensional CW complex X is Rn \

⋃
iB(si, εi). Then we see

that X is a deformation retract of Rn \ S, since we can linearly retract each B(si, εi) \ {si}
to its boundary.

Since n ≥ 3, we have n − 1 ≥ 2, so π1(S
n−1) = 0, and since Xn−1 is a disjoint union of

n− 1 spheres, thus π1(X
n−1, x0) = 0. Now by Proposition 1.26(b), since X is obtained from

Xn−1 by attaching n-cells, π1(X) ∼= π1(X
n−1) = 0. Thus X is simply connected, so Rn \ S,

which is homotopy equivalent to X, is also simply connected.

Proposition 0.2 (Exercise 1.2.7). Let X be the quotient space of S2 formed by identifying
the north and south poles. Then X is a CW complex and has fundamental group π1(X) ∼= Z.

Proof. We take the zero-skeleton X0 to be a single point x0, and form the one-skeleton
X1 by attaching a single interval and identifying both endpoints with x0. Thus, X1 is
homeomorphic to S1. Then we define an attaching map φ : S1 → X1 ∼= S1 as follows. We
view S1 as a square, labelling the sides a, b, c, d in clockwise order. We send a to wrap once
around X1 clockwise. We send b and d both to the basepoint x0. We send c to wrap once
around X1 counterclockwise. Thus we attach a 2-cell to S1. The resulting space is X.

Now we can compute π1(X). By proposition 1.26(a), the inclusion X1 ↪→ X induces a
surjection ι∗ : π(X

1, x0)→ π1(X, x0), where the kernel is generated by conjugations of φ by
change of basepoint paths. Since φ has the right basepoint, the kernel is generated by [φ].
But [φ] = 0 in π1(X

1, x0). Thus π1(X, x0) ∼= π1(X
1, x0) ∼= Z.
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Lemma 0.3 (for Exercise 1.2.9). Let Mg be the closed orientable surface of genus g, and let
M ′

g be the closed surface obtained by removing an open disc from Mg. Then M ′
g '

∨2g
i=1 S

1,
so π1(M

′
g) is the free group on 2g generators.

Proof. We can view Mg as a regular polygon with 4g sides with sides identified in a particular
way. That is, going clockwise around we label the sides

a1, b1, a
−1
1 , b−11 , a2, b2, a

−1
2 , b−12 , . . . , a2g, b2g, a

−1
2g , b

−1
2g

and make the implied identifications. Then we view M ′
g as this same space, with a small

open disk removed from the center of the polygon. Thinking of our polygon as centered at
the origin in the plane, and our removed open disk as centered at the origin, notice that each
radial line connecting the central disk and the boundary the polygon is contractible. Thus,
M ′

g is homotopic to just the polygon with sides identified. This polygon is a wedge sum of

2g circles. Thus M ′
g '

∨2g
i=1 S

1. We already computed π1
(∨2g

i=1 S
1
)

to be the free group on
2g generators, using Van Kampen’s theorem.

Lemma 0.4 (for Exercise 1.2.9). Abelianization of groups is a covariant functor.

Proof. We have a rule ab : Grp → Ab that sends a group G to the abelian group Gab =
G/[G,G]. Given a group homomorphism f : G → H, we define f ab : Gab → Hab by
x[G,G] → f(x)[H,H]. First we check that f ab is well defined. Suppose x[G,G] = y[G,G].
Note that f([G,G]) ⊂ [H,H] since f maps commutators to commutators, as it is a homo-
morphism.

xy−1 ∈ [G,G] =⇒ f(xy−1) ∈ [H,H] =⇒ f(x)f(y)−1 ∈ [H,H] =⇒ f(x)[H,H] = f(y)[H,H]

Thus f ab is well defined. Now we show that it is a covariant functor. First, Idab
G : Gab → Gab

is the identity on Gab, as can be seen from the definition of f ab. Let f : G → H and
g : H → K be group homomorphisms. Then (g ◦ f)ab : Gab → Kab acts on x[G,G] ∈ Gab by

(g ◦ f)ab(x[G,G]) = (g ◦ f)(x)[K,K] = g(f(x))[K, k] = gab(f(x)[H,H]) = gab ◦ f ab(x[G,G])

Thus (g ◦ f)ab = gab ◦ f ab, so ab is a covariant functor.

Lemma 0.5 (for Exercise 1.2.9). Let φ : G→ H and ψ : H → G be group homomorphisms
so that φ ◦ ψ = IdH . Then ψ

ab is injective.

Proof. By functoriality of ab, we have (φ ◦ ψ)ab = φab ◦ ψab and (IdH)ab = IdHab . Thus

φ ◦ ψ = IdH =⇒ φab ◦ ψab = IdHab

Thus ψab has a left inverse, so it is injective.

Proposition 0.6 (Exercise 1.2.9, part one). Let Mg be the orientable surface of genus g,
and let C be a circle that separates Mg into two compact subsurfaces M ′

h and M ′
k obtained

from the closed surfaces Mh and Mk by deleting an open disk from each. Then M ′
h does not

retract onto its boundary circle C, and hence Mg does not retract onto C.
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Proof. Suppose there is a retraction r : M ′
h → C. Then the inclusion ι : C ↪→ M ′

h induces
an injective homomorphism ι∗ : π1(C) → π1(M

′
h). Note that π1(C) ∼= Z and π1(M

′
h) is free

on 2h generators, which we denote by F2h. Thinking of M ′
h as a 4g-sided polygon with a

central disk removed, we see that C, the boundary of the removed disk, is homotopic to the
boundary edge word

[a1, b1] . . . [ah, bh] = a1b1a
−1
1 b−11 . . . ahbha

−1
h b−1h

Thus ι∗ maps a generator of π1(C) to the above word. Then applying the ab functor, we get
ιab∗ : π1(C)ab → π1(M

′
h)

ab. Since π1(C) is abelian, we drop the ab and write ιab∗ : π1(C) →
π1(M

′
h)

ab. Note that we have homomorphisms r∗ : π1(M
′
h)→ π1(C) and ι∗ : π1(C)→ π1(M

′
h)

so that r∗ ◦ ι∗ = Idπ1(C). Then by our Lemma 0.5, ιab∗ is injective. However, we also compute
directly that

ker ιab∗ = {x ∈ π1(C) : ιab∗ (x) = 0}
= {x ∈ π1(C) : ι∗(x)[F2h, F2h] = 0}
= {x ∈ π1(C) : ι∗(x) ∈ [F2h, F2h]}
= π1(C)

since ι∗ maps a generator for π1(C) to a product of commutators. This is a contradiction,
since ι∗ cannot be both injective and have nontrivial kernel. Hence no such retraction exists.

As a consequence of this, we show that Mg does not retract onto C. Suppose we have a
retraction r : Mg → C. Then r|M ′

h
: M ′

h → C is also a retraction, which we showed cannot
exist. Thus Mg does not retract to C.

Proposition 0.7 (Exercise 1.2.9, part two). Let Mg be the orientable surface of genus g,
and let C ′ be a “non-separating” circle (depicted on page 53 of Hatcher). Then Mg retracts
to C ′.

Proof. We think of Mg as a 4g-sided polygon with side identifications going around clockwise

a1, b1, a
−1
1 , b−11 , a2, b2, a

−1
2 , b−12 , . . . , a2g, b2g, a

−1
2g , b

−1
2g

where C ′ is the loop a1. Then we make the identification ai = a1 and bi = b1. The quotient
map of this identification is then a retract Mg →M1, that is, a retract to the torus.

Now we claim that the torus can be retracted to S1. Viewing the torus as a square with
edges aba−1b−1, we define a retraction M1 → M1 by projecting every point straight up to
the edge a1. Continuity is clear everywhere except near the bottom edge a−11 . But the map
is continuous there as well, since this map is equivalent to projecting down to a−11 , and that
map is clearly continuous everywhere except perhaps near the top edge a1. So this is a
retract of M1 to a1. Finally, we take the composition of these retractions to get a retration
Mg to a1 = C ′.

Proposition 0.8. The Borromean rings cannot be split apart.
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Proof. Label the three rings A,B,C. If we regard C as lying in the complement of A ∪ B,
then the question of whether the three circles can be unlinked is equivalent to C being trivial
in π1(R3 \ (A∪B)). As noted by Hatcher on page 46, the complement of A∪B deformation
retracts to S1 ∨ S1 ∨ S2 ∨ S2. Then we see that π1(R3 \ (A∪B)) is the free group generated
by loops around the two copies of S1, which we can call a and b. As Hatcher depicts on page
23, the loop C is then aba−1b−1, which is not zero in the free group. Hence the rings cannot
be split.
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